Des chercheurs ont découvert un gisement potentiel d’hydrogène naturel dans le bassin houiller lorrain… Lequel pourrait être le plus gros réservoir mondial de ce gaz !
En recherche scientifique comme ailleurs, il arrive que l’on découvre quelque chose que l’on ne cherchait pas, voire même que l’on découvre quelque chose d’intérêt supérieur à ce que l’on cherchait. C’est la sérendipité. C’est ce qui nous est arrivé en sondant le sous-sol lorrain depuis la commune de Folschviller et en y dénichant un gisement potentiel d’hydrogène blanc. Sous ce territoire encore durablement affecté par la désindustrialisation pourrait ainsi sommeiller rien moins que le plus gros réservoir mondial connu à ce jour, de ce gaz, qui suscite de plus en plus d’intérêt dans le cadre de la transition énergétique.
Statuer sur nos ressources en méthane et découvrir de l’hydrogène
En tant que membres du Laboratoire GeoRessources de l’Université de Lorraine et du CNRS, le but premier de notre exploration était d’évaluer l’état du méthane dans le sous-sol lorrain afin d’en estimer la ressource et de voir si une production locale de ce gaz était envisageable. Pour poursuivre cet objectif, nous avons dû développer des technologies innovantes pour ausculter in situ et en continu les formations géologiques du Carbonifère (période géologique allant d’il y a 359 à 299 millions d’années).
Cela a notamment été possible grâce à l’invention de la sonde SysMoG en collaboration avec la société Solexperts, un outil qui nous a ainsi permis d’analyser les gaz dissous dans l’eau dans les formations géologiques jusqu’à 1200 m de profondeur, une première mondiale, respectueuse de l’environnement. En effet, le travail de miniaturisation de la sonde SysMoG nous permet une telle auscultation du sous-sol à partir de puits d’un diamètre intérieur de 6 cm !
En poursuivant ainsi le monitoring chimique des strates géologiques et des gaz accompagnateurs du méthane, nous avons été surpris de constater que l’hydrogène était présent en forte proportion et que sa concentration augmentait avec la profondeur pour atteindre 20 % à 1 250m de profondeur. De telles proportions nous permettent désormais de considérer qu’à 3000 m de profondeur, la teneur en hydrogène pourrait dépasser 90 %, d’après nos modélisations. Ainsi et sur la base des données gazières à -1 100m (14 % d’hydrogène), ce gisement lorrain pourrait contenir jusqu’à 46 millions de tonnes d’hydrogène blanc, c’est-à-dire plus de la moitié de la production annuelle mondiale actuelle d’hydrogène gris.
Les différentes couleurs de l’hydrogène
Blanc ? Gris ? Derrière ces « couleurs » de l’hydrogène se cache en fait sa provenance en lien avec son mode de production. Pour rappel, l’hydrogène est un gaz qui, la plupart du temps, est combiné à d’autres éléments, dans l’eau, dans les énergies fossiles…
L’hydrogène gris correspond ainsi à l’hydrogène produit en usine par transformation de gaz naturel. Il s’agit actuellement de la première provenance d’hydrogène utilisée comme source d’énergie, qui est critiquée pour la quantité de CO2 émise durant le procédé. L’hydrogène noir est quant à lui produit à partir de charbon, l’hydrogène vert est lui le résultat d’électrolyse de l’eau avec de l’électricité produite à partir d’énergie renouvelable. Pour toutes ces formes d’hydrogène, on parle donc d’énergie secondaire. L’hydrogène blanc, qui nous intéresse ici, correspond à l’hydrogène déjà présent en l’état dans la nature. Il s’agit alors d’une source d’énergie primaire.
Sa disponibilité à l’état brut le rend des plus intéressant à l’heure où l’hydrogène pourrait remplacer les énergies fossiles dans les secteurs des transports ou dans les fabrications très énergivores du verre, de l’acier et du ciment, mais où des voix s’élèvent aussi pour questionner l’empreinte carbone de ses modes de production.
La piste d’un hydrogène issu de phénomènes d’oxydation et de réduction
Directement disponible, ce gisement potentiel d’hydrogène blanc a donc l’immense avantage de ne pas nécessiter d’énergie supplémentaire pour être produit à partir d’autres gaz ou molécules. Il suscite également notre enthousiasme car l’hypothèse que nous favorisons aujourd’hui pour expliquer sa présence dans le sous-sol lorrain laisse présager une ressource presque infinie de ce gaz.
Pour rappel, l’hydrogène est très fréquemment présent dans le milieu naturel et son origine peut être multifactorielle (activité bactérienne, artefact technologique, origines géologiques impliquant les phases minérales ou organiques). Concernant la Lorraine, nous privilégions pour l’instant l’idée que l’hydrogène est ici le résultat de la présence, à la fois de molécules d’eau et de minéraux composés de carbonates de fer.
Deux composés qui, lorsqu’ils entrent en contact, génèrent des réactions d’oxydation du minéral et de réduction de l’eau, qui aboutissent à la production d’hydrogène (H2) et d’oxydes de fer. Si cette hypothèse se confirme, cela impliquerait que cette production d’hydrogène, en plus d’être colossale et naturelle, pourrait donc être presque « renouvelable » car ces processus chimiques d’oxydation et de réduction demeurent rapides (de l’ordre de quelques semaines ou mois) et car la réserve de carbonate de fer dans le sous-sol lorrain est quasi infinie.
Auteurs:
- Jacques Pironon. Directeur de recherche au CNRS, Université de Lorraine
- Philippe de Donato. Directeur de recherche au CNRS, Université de Lorraine
Suite de cet article : The Conversation